By increasing atomic number
D. is the answer
hope i could help
There are several information's already given in the question. Based on the information's provided, the answer can be easily deduced.
V1 = 25 ml
= 25/1000 liter
= 0.025 liter
V2 = 18 ml
= 18/1000 liter
= 0.018 liter
M2 = 1.0 M
M1 = ?
Then
M1V1 = M2V2
M1 = M2V2/V1
= (1 * 0.018)/0.025
= 0.72 M
From the above deduction, it can be easily concluded that the correct option among all the options that are given in the question is the first option or option "A". I hope that this is the answer that has actually come to your help.
Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:- 
Explanations:- Alkanes are non polar molecules as these only have carbons and hydrogens. Electron negativity difference of C and H is very low and it makes them non polar. These have weaker London dispersion forces.
The forces of attraction becomes stronger in alkanes as the number of carbon increases because the surface area as well as molecular weight of the alkanes increases with an increase in number of carbons.
Butane has four carbons, propane has three carbons, ethane has two and methane has only one carbon, So, the strongest to weakest order of inter molecular forces is butane > propane > ethane > methane .