Answer: 1.77 s
Explanation: In order to solve this problem we have to use the kinematic equation for the position, so we have:
xf= xo+vo*t+(g*t^2)/2 we can consider the origin on the top so the xo=0 and xf=29 m; then
(g*t^2)/2+vo*t-xf=0 vo is the initail velocity, vo=7.65 m/s
then by solving the quadratric equation in t
t=1.77 s
Answer:
Correct sentence: gravitational potential energy of the mass on the hook.
Explanation:
The mechanical energy of a body or a physical system is the sum of its kinetic energy and potential energy. It is a scalar magnitude related to the movement of bodies and to forces of mechanical origin, such as gravitational force and elastic force, whose main exponent is Hooke's Law. Both are conservative forces. The mechanical energy associated with the movement of a body is kinetic energy, which depends on its mass and speed. On the other hand, the mechanical energy of potential origin or potential energy, has its origin in the conservative forces, comes from the work done by them and depends on their mass and position. The principle of conservation of energy relates both energies and expresses that the sum of both energies, the potential energy and the kinetic energy of a body or a physical system, remains constant. This sum is known as the mechanical energy of the body or physical system.
Therefore, the kinetic energy of the block comes from the transformation in this of the gravitational potential energy of the suspended mass as it loses height with respect to the earth, keeping the mechanical energy of the system constant.
The maximum speed the mass can have before it breaks is 2.27 m/s.
The given parameters:
- <em>maximum mass the string can support before breaking, m = 17.9 kg</em>
- <em>radius of the circle, r = 0.525 m</em>
The maximum speed the mass can have before it breaks is calculated as follows;
![T = ma_c\\\\Mg = \frac{Mv^2}{r} \\\\v^2 = rg\\\\v = \sqrt{rg} \\\\v_{max} = \sqrt{0.525 \times 9.8} \\\\v_{max} = 2.27 \ m/s](https://tex.z-dn.net/?f=T%20%3D%20ma_c%5C%5C%5C%5CMg%20%3D%20%5Cfrac%7BMv%5E2%7D%7Br%7D%20%5C%5C%5C%5Cv%5E2%20%3D%20rg%5C%5C%5C%5Cv%20%3D%20%5Csqrt%7Brg%7D%20%5C%5C%5C%5Cv_%7Bmax%7D%20%3D%20%5Csqrt%7B0.525%20%5Ctimes%209.8%7D%20%5C%5C%5C%5Cv_%7Bmax%7D%20%3D%202.27%20%5C%20m%2Fs)
Thus, the maximum speed the mass can have before it breaks is 2.27 m/s.
Learn more about maximum speed of horizontal circle here:brainly.com/question/21971127
Answer:
you can simply answer by derivative = 3.5x^2+25x+250-y=0 you can derivate this eqn 7x +25-1=0 7x=24 yo u can divide you get it
Search Results
Featured snippet from the web
The spontaneous emission of radiations from an unstable nuclei is known as natural radioactivity. on the other hand, The process of emission of radiations from naturally occurring isotopes when they are bombarded with sub-atomic particles or high levels of X-rays or gamma rays called artificial radioactivity.