Answer:
because all objects fall at a rate of 9.8m/s²
Answer:
0.631 m
6.53315 J
Explanation:
m = Mass = 2.47 kg
v = Velocity = 2.30 m/s
k = Spring constant = 32.8 N/m
A = Amplitude
In this system the energy is conserved

The amplitude is 0.631 m
Mechanical energy is given by

The mechanical energy is 6.53315 J
It's called a concave lens.
Answer:
The thermal conductivity of the wall = 40W/m.C
h = 10 W/m^2.C
Explanation:
The heat conduction equation is given by:
d^2T/ dx^2 + egen/ K = 0
The thermal conductivity of the wall can be calculated using:
K = egen/ 2a = 800/2×10
K = 800/20 = 40W/m.C
Applying energy balance at the wall surface
"qL = "qconv
-K = (dT/dx)L = h (TL - Tinfinity)
The convention heat transfer coefficient will be:
h = -k × (-2aL)/ (TL - Tinfinty)
h = ( 2× 40 × 10 × 0.05) / (30-26)
h = 40/4 = 10W/m^2.C
From the given temperature distribution
t(x) = 10 (L^2-X^2) + 30 = 30°
T(L) = ( L^2- L^2) + 30 = 30°
dT/ dx = -2aL
d^2T/ dx^2 = - 2a