Answer:
For any string, we use
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take , and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
Answer:
4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Explanation:
we have given 4140 steel contains 0.4% C
we know here that 4140 steel is low steel alloy , and it have low amount of chromium , manganese etc alloying element
and these elements which are present in 4140 steel they increase yield strength and ultimate strength of steel
while in 1045 steel contains 0.45 % c is plain carbon steel
and it do not contain any alloying element
so that 4140 steel contains 0.4% C having higher yield strength and ultimate strength than the 1045 steel contains 0.45% C
Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer: r = 0.8081; s = -0.07071
Explanation:
A = (150i + 270j) mm
B = (300i - 450j) mm
C = (-100i - 250j) mm
R = rA + sB + C = 0i + 0j
R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j
R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j
Equating the i and j components;
150r + 300s - 100 = 0
270r - 450s - 250 = 0
150r + 300s = 100
270r - 450s = 250
solving simultaneously,
r = 0.8081 and s = -0.07071
QED!