Answer:
a) ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b)
The phase is; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Explanation:
a) 15 wt% Sn - 85 wt% Pb at 100⁰C.
The phases are ; ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b) 1.25 kg of Sn and 14 kg Pb at 200⁰C
The phase is ; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Csn = 1.25 * 100 / 1.25 + 14 = 8.2 wt%
Cpb = 14 * 100 / 1.25 + 14 = 91.8 wt%
Complete Question
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
The elongation is 
Explanation:
In order to gain a good understanding of this solution let define some terms
True Stress
A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as
.
True Strain
A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as
.
The mathematical relation between stress to strain on the plastic region of deformation is

Where K is a constant
n is known as the strain hardening exponent
This constant K can be obtained as follows

No substituting
from the question we have


Making
the subject from the equation above




From the definition we mentioned instantaneous length and this can be obtained mathematically as follows

Where
is the instantaneous length
is the original length



We can also obtain the elongated length mathematically as follows



Answer:
The tension in the rope at the lowest point is 270 N
Explanation:
Given;
weight of the ball, W = 150 N
length of the rope, r = 4 m
velocity of the ball, v = 5.6 m/s
When the ball passes through the lowest point, the tension on the rope is the sum of weight of the ball and centripetal force.
T = W + F
Centripetal force, F = mv²/r
where;
m is the mass of the ball
m = W/g
m = 150 / 9.8 = 15.306 kg
Centripetal force, F = mv²/r
F = (15.306 x 5.6²)/4
F = 120 N
T = W + F
T = 150 + 120
T = 270 N
Therefore, the tension in the rope at the lowest point is 270 N