Answer:
The speed of space station floor is 49.49 m/s.
Explanation:
Given that,
Mass of astronaut = 56 kg
Radius = 250 m
We need to calculate the speed of space station floor
Using centripetal force and newton's second law




Where, v = speed of space station floor
r = radius
g = acceleration due to gravity
Put the value into the formula


Hence, The speed of space station floor is 49.49 m/s.
Answer D
In alkali earth metals reacrivity increases from top to bottom (opposite of b)
This is because as you go down, the electron shells increase by 1 shell. The farther away a shell is from the nucleus, the higher its tendency to react.
D is true because the more reactive an alkali metal is, the more vigorous the reaction will be with water.
Answer:
B
Explanation:
Atomic structure contains electrons, protons and neutrons.
Electron is very light compared to proton and neutrons.
Given that the mass of an electron is
A) equal to the mass of a proton
B) less than the mass of a neutron
C) greater than the mass of a proton
D) equal to the mass of a neutron
The correct answer is B which is less than the mass of the neurons.
Answer:
Range, 
Explanation:
The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.
Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.
So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops
Therefore {tex}R = MV²/2QE{/tex}
Answer:
The values is 
The direction is out of the plane
Explanation:
From the question we are told that
The magnitude of the electric field is 
The magnitude of the magnetic field is mathematically represented as

where c is the speed of light with value


Given that the direction off the electromagnetic wave( c ) is northward(y-plane ) and the electric field(E) is eastward(x-plane ) then the magnetic field will be acting in the out of the page (z-plane )