Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b

Explanation:
From the question we are told that
The amplitude is 
The period is 
The test weight is 
Generally the radial acceleration is mathematically represented as

at maximum angular acceleration

So

Now
is the angular velocity which is mathematically represented as

Therefore
![a_{max} = [\frac{2 * \pi}{T} ]^2 * A](https://tex.z-dn.net/?f=a_%7Bmax%7D%20%3D%20%20%5B%5Cfrac%7B2%20%2A%20%20%5Cpi%7D%7BT%7D%20%5D%5E2%20%2A%20A)
substituting values
![a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018](https://tex.z-dn.net/?f=a_%7Bmax%7D%20%3D%20%20%5B%5Cfrac%7B2%20%2A%20%203.142%7D%7B17%7D%20%5D%5E2%20%2A%200.018)

Generally this test weight is mathematically represented as
Where k is the spring constant
Therefore

substituting values


Metal is a conductor of heat while wood does the opposite so having a wooden spoon would keep you from burning your hand
Answer:
Temperature when sound wave with wavelength 0.47m has frequency 741 hz is 188 degrees Centigrade.
Step-by-Step Explanation:
Given:
Speed of sound at 0 degrees centigrade = 235 ms
frequency = f = 741 hz
wavelength = w = 0.47m
speed of sound wave = wavelength * frequency = 741 * 0.47 = 348.27 m/s
Using the formula for speed of sound at a specific temperature:
Speed of sound at T degrees Centigrade = Speed of sound at 0 degrees + 0.6 * T
When speed of sound is 348 m/s, the temperature is given by:
348 = 235 + 0.6(T)
T = (348-235)/0.6
T = 188 degrees Centigrade