Throw it sideways and try to make it spin around but it needs to be thrown high up then it should kinda glide down
Light energy is defined as how nature moves energy at an extremely rapid rate, and it makes up about 99% of the body's atoms and cells, and signal all body parts to carry out their respective tasks. An example of light energy is the movement of a radio signal.
Answer:
This is True
Explanation:
I just did this exact unit in bio last week I hope this helps ;)
The statement about pointwise convergence follows because C is a complete metric space. If fn → f uniformly on S, then |fn(z) − fm(z)| ≤ |fn(z) − f(z)| + |f(z) − fm(z)|, hence {fn} is uniformly Cauchy. Conversely, if {fn} is uniformly Cauchy, it is pointwise Cauchy and therefore converges pointwise to a limit function f. If |fn(z)−fm(z)| ≤ ε for all n,m ≥ N and all z ∈ S, let m → ∞ to show that |fn(z)−f(z)|≤εforn≥N andallz∈S. Thusfn →f uniformlyonS.
2. This is immediate from (2.2.7).
3. We have f′(x) = (2/x3)e−1/x2 for x ̸= 0, and f′(0) = limh→0(1/h)e−1/h2 = 0. Since f(n)(x) is of the form pn(1/x)e−1/x2 for x ̸= 0, where pn is a polynomial, an induction argument shows that f(n)(0) = 0 for all n. If g is analytic on D(0,r) and g = f on (−r,r), then by (2.2.16), g(z) =
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire which is 11(r) m/s.
<h3>
Angular velocity of the tire</h3>
The angular velocity of the tire is the rate of change of angular displacement of the tire with time.
The magnitude of the angular velocity of the tire is calculated as follows;
ω = 2πN
where;
- N is the number of revolutions per second
ω = 2π x (5.25 / 3)
ω = 11 rad/s
<h3>Tangential velocity of the tire</h3>
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire.
The magnitude of the tangential velocity is caculated as follows;
v = ωr
where;
- r is the radius of the car's tire
v = 11r m/s
Learn more about tangential velocity here: brainly.com/question/25780931