It is difficult for astronomers to find object like planets and asteroids because it takes a lot of time to verify the objects locations and what surrounds a certain object in order to prove and be precise of its location
Answer:
the weight of the large stone is greater than a small one
Explanation:
because the large stone has greater mass then the small stone.therefore it is difficult to lift the large stone on the surface of the earth but easy to lift the small one
Answer:
15.8 ft/s
Explanation:
= Velocity of car A = 9 ft/s
a = Distance car A travels = 21 ft
= Velocity of car B = 13 ft/s
b = Distance car B travels = ft
c = Distance between A and B after 4 seconds = √(a²+b²) = √(21²+28²) = √1225 ft
From Pythagoras theorem
a²+b² = c²
Now, differentiating with respect to time

∴ Rate at which distance between the cars is increasing three hours later is 15.8 ft/s
Answer:
the direction of angular momentum = EAST
Explanation:
given
Direction of position = r = north
Direction of velocity = v = up
angular momentum = L = m(r x v)
where m is the mass, r is the radius, v is the velocity
utilizing the right hand rule, the right finger heading towards the course of position vector and curl them toward direction of velocity, at that point stretch thumb will show the bearing of the angular momentum.
then L = north x up = East
The height of the rail on top of the press box where the ball was dropped from is 11.025 m.
The given parameters:
- Time of motion of the ball, t = 1.5 s
- Let the height of the rail = h
<h3>Maximum height of fall;</h3>
- The maximum height through which the ball was dropped from is calculated by applying second equation of motion;

Thus, the height of the rail on top of the press box where the ball was dropped from is 11.025 m.
Learn more about height of projectiles here: brainly.com/question/10008919