The level and type of impairment determine the severity and location of the injury.
Answer:
Explanation:
Velocity at the bottom of height h
= √2gh
deceleration on rough horizontal surface
= μg , μ is coefficient of friction
= .27 x 9.8
= 2.646 m / s²
v² = u² - 2as
0 = 2gh - 2 x 2.646 x 19
h = 2 x 2.646 x 19 / 2 x 9.8
= 5.13 m
Explanation:
Given that,
Initial speed of the airfield, u = 0
Final speed, v = 27.8 m/s
Acceleration of the airfield, 
Length of the runway, d = 150 m
Let v' is the speed of the airplane to reach the required speed for takeoff. Finding v' using third equation of motion as :

This speed is not enough as the airfield must reach a speed before takeoff of at least 27.8 m/s. Now, the required length of the runways is :

So, the minimum length of the runways is 193.21 meters.
Answer: You could dissolve it by heating it back up, then just cooling it down again.
Hope that helps!
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836