Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Answer:
ALT TO FRIEND
HI FIREND
COPY BOB IN ALT ACC
CANT GET BAN
───▄▀▀▀▄▄▄▄▄▄▄▀▀▀▄───
───█▒▒░░░░░░░░░▒▒█───
────█░░█░░░░░█░░█──── this is Taco
─▄▄──█░░░▀█▀░░░█──▄▄─
█░░█─▀▄░░░░░░░▄▀─█░░█
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░ they have made an alliance
▀█▌░░░▄░▀█▀░▀ ░░ Copy and paste them so we can take over brainly.
░░░░░░░▀███▀█░▄░░
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░
░░░░░░█░░░░░░░░█░
Explanation:
Answer:
Moc = -613.25 [lb*in]
Explanation:
Este problema se puede resolver mediante la mecánica vectorial, es decir se realizara un analisis de vectores.
Primero se calculara el momento de la fuerza F_AB con respecto al punto O, debemos recordar que el momento con respecto a un punto se define como el producto cruz de la distancia por la fuerza.
(producto cruz)
Necesitamos identificar los puntos:
O (0,0,0) [in]
A (12,0,0) [in]
B (0, 24,8) [in]
C (12,24,0) [in]
![r_{A/O}=(12,0,0) - (0,0,0)\\r_{A/O} = 12 i + 0j+0k [in]\\AB = (0,24,8) - (12,0,0)\\AB = -12i+24j+8k [in]\\[LAB]=\frac{-12i+24j+8k}{\sqrt{(12)^{2} +(24)^{2} +(8)^{2} } }\\ LAB=-\frac{3}{7} i+\frac{6}{7}j+\frac{2}{7}k](https://tex.z-dn.net/?f=r_%7BA%2FO%7D%3D%2812%2C0%2C0%29%20-%20%280%2C0%2C0%29%5C%5Cr_%7BA%2FO%7D%20%3D%2012%20i%20%2B%200j%2B0k%20%5Bin%5D%5C%5CAB%20%3D%20%280%2C24%2C8%29%20-%20%2812%2C0%2C0%29%5C%5CAB%20%3D%20-12i%2B24j%2B8k%20%5Bin%5D%5C%5C%5BLAB%5D%3D%5Cfrac%7B-12i%2B24j%2B8k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%288%29%5E%7B2%7D%20%7D%20%7D%5C%5C%20LAB%3D-%5Cfrac%7B3%7D%7B7%7D%20i%2B%5Cfrac%7B6%7D%7B7%7Dj%2B%5Cfrac%7B2%7D%7B7%7Dk)
El ultimo vector calculado corresponde al vector unitario (magnitud = 1) de AB. El vector fuerza corresponderá al producto del vector unitario por la magnitud de la fuerza = 200 [lb].
![F_{AB}=-\frac{600}{7} i +\frac{1200}{7}j+\frac{400}{7} k [Lb]](https://tex.z-dn.net/?f=F_%7BAB%7D%3D-%5Cfrac%7B600%7D%7B7%7D%20i%20%2B%5Cfrac%7B1200%7D%7B7%7Dj%2B%5Cfrac%7B400%7D%7B7%7D%20k%20%5BLb%5D)
De esta manera realizando el producto cruz tenemos

![M_{O}=0i-685.7j+2057.1k [Lb*in]](https://tex.z-dn.net/?f=M_%7BO%7D%3D0i-685.7j%2B2057.1k%20%5BLb%2Ain%5D)
Para calcular el momento con respecto a la diagonal OC, necesitamos el vector unitario de esta diagonal.
![OC = (12,24,0)-(0,0,0)\\OC= 12i+24j+0k[Lb]\\LOC = \frac{12i+24j+0k}{\sqrt{(12)^{2} +(24)^{2} +(0)^{2} } } \\LOC=\frac{12}{\sqrt{720}}i+\frac{24}{\sqrt{720}}j +0k](https://tex.z-dn.net/?f=OC%20%3D%20%2812%2C24%2C0%29-%280%2C0%2C0%29%5C%5COC%3D%2012i%2B24j%2B0k%5BLb%5D%5C%5CLOC%20%3D%20%5Cfrac%7B12i%2B24j%2B0k%7D%7B%5Csqrt%7B%2812%29%5E%7B2%7D%20%2B%2824%29%5E%7B2%7D%20%2B%280%29%5E%7B2%7D%20%7D%20%7D%20%5C%5CLOC%3D%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7Dj%20%20%2B0k)
El vector con respecto al eje OC, es igual al producto punto del momento en el punto O por el vector unitario LOC
![M_{OC}=L_{OC}*M_{O}\\M_{OC}=(\frac{12}{\sqrt{720}}i +\frac{24}{\sqrt{720}} j+0k )* (0i-685.7j+2057.1k)\\M_{OC}= -613.32[Lb*in]](https://tex.z-dn.net/?f=M_%7BOC%7D%3DL_%7BOC%7D%2AM_%7BO%7D%5C%5CM_%7BOC%7D%3D%28%5Cfrac%7B12%7D%7B%5Csqrt%7B720%7D%7Di%20%2B%5Cfrac%7B24%7D%7B%5Csqrt%7B720%7D%7D%20j%2B0k%20%29%2A%20%280i-685.7j%2B2057.1k%29%5C%5CM_%7BOC%7D%3D%20-613.32%5BLb%2Ain%5D)