To solve this problem we will use the kinematic formula for the final velocity.

The final speed is 0 at the moment the player stops.
The time until it stops is 1.3 s
The initial speed is 200 feet / s Note (check the speed units in the problem statement, 200ft / s is very much and 200ft / h is very small)
Then, we clear the formula.

Because the player is slowing down, the acceleration goes in the opposite direction to the player's movement, and that is why it is negative.
To answer part b) we use the following formula.

I'd go with electricity source. Good luck!!
Answer:
Planting of trees on sloped surfaces is a method of conservation that utilizes the roots of plants. Planting trees on such areas would prevent hazards and maintain the soil formation future since the roots would hold the soil together preventing or minimizing any soil erosion.
Answer:
The final velocity of the object is,
= 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object,
= 0 m
The final displacement of the object,
= 0.75 m
The initial velocity of the object will be,
= o m/s
The final velocity of the object,
= ?
The average velocity of the object,
v = (
-
)/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is,
= 27 m/s
Efficiency is calculated through dividing the actual mechanical advantage by the hypothetical mechanical advantage:
- the actual mechanical advantage is 9J because that's how much work the light bulb doing
- the hypo. mechanical advantage is 100J. Ideally, in a perfect world, the light bulb can convert 100J input into 100J output, but do to resistance and other factors it is not possible.

change the decimal to a percentage:

the light bulb had 9% efficiency