Answer:
5.71428571422 m/s
Explanation:
u = Initial velocity = 20 m/s
v = Final velocity
s = Displacement
a = Acceleration
Time taken = 15-1 = 14 s
Distance traveled in 1 second = 


The speed as she reaches the light at the instant it turns green is 5.71428571422 m/s
The force is 2.0 N east
Explanation:
The impulse exerted by a force is defined as the product between the force itself and the time interval during which the force is applied. Mathematically, it is equal to the change in momentum experienced by the object on which the force is acting:

Where
I is the impulse
F is the force
is the time interval during which the force is applied
is the change in momentum
In this problem,
is the time interval
(east) is the impulse
Therefore, the magnitude of the force is

And the direction is the same as the impulse (east).
Learn more about impulse and change in momentum:
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Acceleration a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2
Explanation:
For the truck to accelerate without losing its load.
Acceleration force of truck must be less than or equal to the maximum friction force between the truck bed and the load.
Fa ≤ F(friction)
But;
Fa = mass × acceleration
Fa = ma
ma ≤ F(friction)
a ≤ (F(friction))/m ......1
Given;
Fa = mass × acceleration
Fa = ma
mass m = 800 kg
F(friction) = 2400 N
Substituting the given values into equation 1;
a ≤ F(friction)/m
a ≤ 2400N/800kg
a ≤ 3 m/s^2
the greatest acceleration that the truck can have without losing its load is 3 m/s^2
Answer:
Explanation:
The coordinate sketch for the system is shown in the attached file below. Also, in the cartesian coordinate system, since the height is less than the length and width, we did neglect the height. Thus, we eliminate the height and converted it to a two-dimension.