No.
The acceleration of gravity on or near Earth's surface is 9.8 m/s² ,
not 20 m/s² .
If it were 20 m/s², then you would weigh almost exactly double
what you really weigh now.
Answer:
Explanation:
Orbital radius of satellite A , Ra = 6370 + 6370 = 12740 km
Orbital radius of satellite B , Rb = 6370 + 19110 = 25480 km
Orbital potential energy of a satellite = - GMm / r where G is gravitational constant , M is mass of the earth and m is mass of the satellite
Orbital potential energy of a satellite A = - GMm / Ra
Orbital potential energy of a satellite B = - GMm / Rb
PE of satellite B /PE of satellite A
= Ra / Rb
= 12740 / 25480
= 1 / 2
b ) Kinetic energy of a satellite is half the potential energy with positive value , so ratio of their kinetic energy will also be same
KE of satellite B /KE of satellite A
= 1 / 2
c ) Total energy will be as follows
Total energy = - PE + KE
- P E + PE/2
= - PE /2
Total energy of satellite B / Total energy of A
= 1 / 2
Satellite B will have greater total energy because its negative value is less.
A lab cart is loaded with different masses and moved at various constant velocities? the anser should be
1.0m/s → 4kg
Answer:
<u><em>a. True</em></u>
Explanation:
<em>Vectors are an important part of the language of science, mathematics, and engineering.</em>
Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.