Specific gravity is the ratio of density of substance and density of water
We know that density of water = 1 g /mL at standard conditions
now as given that the 0.8 Kg of the substance / object is able to displace 500mL of water , it means that
Mass of object = 800g
The volume occupied by 800g of object = 500 mL
Density = mass / volume
Density of object = 800 / 500= 1.6 g / mL
The specific gravity of object = density of object / density of water = 1.6 / 1 = 1.6 (no units)
Answer:
F = 50 N
Explanation:
Given data:
Mass of car = 250 Kg
Acceleration of car = 0.20 m/s²
Force required = ?
Solution:
Formula:
F = m×a
F = applied force
m = mass
a = acceleration
Now we will put the values in formula.
F = 250 Kg × 0.20 m/s²
F = 50 Kg.m/s²
Kg.m/s² = N
F = 50 N
Answer: They are close to each other by 41.03 m^3
Explanation:
From Ideal gas equation, PV = nRT
Where n is negligible
R is gas constant = 8.314 J/mol.k
T = 30 + 273 = 303K
P = 1.02 * 103351.5 = 103351.5 Pascal
Then;
PV = RT
V = P/RT
V = 103351.5/(8.314*303)
V = 41.03m^3
Answer:
I believe the answer is A
Explanation:
Work and energy are related because when you work, you cause displacement in the object you are exerting upon. While this happens, you transfer energy between the systems. Both work and energy share the same SI unit, called the joule.
Answer:
The Law of Definite Proportions ensures that chemical compounds are always created using the same proportions, regardless of the amount of the compound which is being made