Very low gives free energy
Answer: If the intermolecular forces are weak, then molecules can break out of the solid or liquid more easily into the gas phase. Consider two different liquids, one polar one not, contained in two separate boxes. We would expect the molecules to more easily break away from the bulk for the non-polar case. If the molecules are held tightly together by strong intermolecular forces, few of the molecules will have enough kinetic energy to separate from each other. They will stay in the liquid phase, and the rate of evaporation will be low. ... They will escape from the liquid phase, and the rate of evaporation will be high. To make water evaporate, energy has to be added. The water molecules in the water absorb that energy individually. Due to this absorption of energy the hydrogen bonds connecting water molecules to one another will break.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!! :D
Density is given by the equation D=m/V, were D is density, m is mass in grams, and V is volume in cubic centimeters.
In this problem, we have density and we have mass so we can plug into the equation and solve for V.
38.6=270.2/V
<em>*Multiply both sides by V*</em>
38.6V=270.2
<em>*Divide both sides by 38.6*</em>
V=7
The volume of the gold nugget is 7cm3.
Hope this helps!!
Answer:
The statement is false. See the explanation below, please.
Explanation:
The hydrogen bond or bridge is a type of dipole-dipole interaction that is generated from the attraction of a hydrogen atom and a very electronegative atom (oxygen, fluorine or nitrogen). Examples of hydrogen bridge molecules: Water (H20), ammonia (NH3).
Answer:
Name Atomic Number Electron Configuration Period 1 Hydrogen 1 1s1 Helium 2 1s2 Period 2 Lithium 3 1s2 2s1 Beryllium 4 1s2 2s2 Boron 5 1s2 2s22p1 Carbon 6 1s2 2s22p2 Nitrogen 7 1s2 2s22p3 Oxygen 8 1s2 2s22p4 Fluorine 9 1s2 2s22p5 Neon 10 1s2 2s22p6 Period 3 Sodium 11 1s2 2s22p63s1 Magnesium 12 1s2 2s22p63s2 Aluminum 13