Yes because color change is a sign of a chemical reaction.
I know it would be calcium chloride, not sure why. Maybe someone could answer that part.
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
Answer:
im the only answer your gonna get
Explanation:
Answer:
Q = 1379.4 J
Explanation:
Given data:
Mass of water = 22 g
Initial temperature = 18°C
Final temperature = 33°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.
°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 18 °C
ΔT = 15°C
Q = 522 g ×4.18 J/g.°C× 15°C
Q = 1379.4 J