The experimental mole ratio of silver chloride to barium chloride is calculated as below
fin the mole of each compound
mole= mass/molar mass
moles of AgCl = 14.5g/142.5 g/mol = 0.102 moles of AgCl
moles of BaCl2 = 10.2 g/208 g/mol = 0.049 moles of BaCl2
find the mole ratio by dividing each mole with the smallest mole(0.049)
AgCl= 0.102/0.049 =2
BaCl2 = 0.049/0.049 =1
therefore the mole ratio AgCl to BaCl2 is 2 :1
Above it says the molecular weights are
NH3- 17g/mol and SF6-146 g/mol
Well 1 mole of SF6 is 146.048 grams (i added hte atomic masses of each element). So then the number of moles in 0.85 grams would be 0.00582000438 moles.
<span><span><span>= 1mole / </span><span>146.048g *</span></span> 0.85g</span>
so we would need 0.00582000438 moles of NH3 to have the same number of molecules.
One mole of NH3 is 17.030519999989988 grams (i added each atoms mass). so 0.00582000438 moles of NH3 would be:
<span><span><span>= 17.030519999989988 g / </span><span>mole * </span></span>0.00582000438moles</span>
that equals 0.09911770099 grams.
so 0.09911770099 grams is the answer if you round that you get about 0.1 grams
Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Covalent
Between 0.4 and 1.7 then it is Polar Covalent
Greater than 1.7 then it is Ionic
For N₂,
E.N of Nitrogen = 3.04
E.N of Nitrogen = 3.04
________
E.N Difference
0.00 (Non Polar Covalent)
For Na₂O,
E.N of Oxygen = 3.44
E.N of Sodium = 0.93
________
E.N Difference 2.51 (Ionic)
For CO₂,
E.N of Oxygen = 3.44
E.N of Carbon = 2.55
________
E.N Difference 0.89 (Polar Covalent)
Answer:
Gravitational Force.
Gravitation is the agent that gives weight to objects with mass and causes them to fall on the ground when dropped.
Answer:
I think that the answer is A.