Cu =63.5
2 times N =28.02
6 times O =96
96=63.5=28.02=127.07
122/127.07=.96 molecules
<h2><u>
Answer:</u></h2>
0.126 Liters
<h2><u>
Explanation:</u></h2>
V = mRT / mmP
First, convert the 2.25g of Nitrogen gas into moles. (m in the equation above)
2.25g x 1 mole / 28.0g = 0.08036 moles = m
28.0g = mm
Next, convert the 273 Celsius into Kelvin. (T in the equation above)
273 Celsius + 273.15 = 546.15K = T
R = 0.08206L*atm/mol*K
(Quick Note: The R changes depending on the Pressure Unit so do not use this number every time.)
Now, plug everything into the equation.
V = (0.08036)(0.08206)(546.15)/(28.0)(1.02)
V = 0.126 L
Colligative properties depend on the amount of solute dissolved in a solvent. These set of properties do not depend on the type of species present. These properties include freezing point depression, boiling point elevation, osmotic pressure and vapor pressure lowering.
The atomic number of Li is 3
Electron configuration of Li : 1s² 2s¹
The atomic number of Na is 11
Electron configuration of Na : 1s²2s²2p⁶3s¹
Thus there is one electron in the valence shell of Li (2s¹) and that of Na (3s¹). However, the valence electron in Na is in a shell that is farther away from the nucleus compared to that of Li. As a result, the Na valence electron will be held less tightly by the nucleus i.e. it will experience a reduced nuclear attraction and can be removed easily than the Li 2s electron.
Answer:
Consumers must consume other organisms to get the food that they need and are known as Heterotrophs as they cannot make their own glucose. These consumers eat producers (plants). Herbivores are considered as first order consumers. These consumers eat consumers and producers (animals and plants).