Answer:
1. 0.125 mole
2. 42.5 g
3. 0.61 mole
Explanation:
1. Determination of the number of mole of NaOH.
Mass of NaOH = 5 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass /molar mass
Mole of NaOH = 5/40
Mole NaOH = 0.125 mole
2. Determination of the mass of NH₃.
Mole of NH₃ = 2.5 moles
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 2.5 × 17
Mass of NH₃ = 42.5 g
3. Determination of the number of mole of Ca(NO₃)₂.
Mass of Ca(NO₃)₂ = 100 g
Molar mass of Ca(NO₃)₂ = 40 + 2[14 + (3×16)]
= 40 + 2[14 + 48]
= 40 + 2[62]
= 40 + 124
= 164 g/mol
Mole of Ca(NO₃)₂ =?
Mole = mass /molar mass
Mole of Ca(NO₃)₂ = 100 / 164
Mole of Ca(NO₃)₂ = 0.61 mole
2C5H12 + 16O2 —> 10CO2 + 12H2O
2•5=10 C 10=1•10
2•12=24 H 24=2•12
16•2=32 O 32=(10•2)+(1•12)
=20+12
Answer:
The answer is A.
Explanation:
when the ball gets to R and S then that's when gravity starts to take over instead of kinetic energy so therefore its potential energy
Answer:
d. 12.3 grams of Al2O3
Explanation:
The balanced chemical equation of this chemical reaction is as follows:
4Al + 3O2 --> 2Al2O3
Based on the balanced equation, 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
First, we need to convert the mass of aluminum to moles using the formula;
mole = mass/molar mass
Molar mass of Al = 27g/mol
mole = 6.50/27
= 0.241mol of Al.
Hence, if 4 moles of aluminum (limiting reagent) reacts to form 2 moles of aluminum oxide (Al2O3).
Then, 0.241mol of Al will produce (0.241 × 2/4) = 0.241/2 = 0.121mol of Al2O3.
Convert this mole value to molar mass using mole = mass/molar mass
Molar mass of Al2O3 = 27(2) + 16(3)
= 54 + 48
= 102g/mol
mass = molar mass × mole
mass = 102 × 0.121
mass of Al2O3 = 12.34grams.
Hydrogen. Covalent bonds occur within each linear strand and strongly bond the bases, sugars, and phosphate groups (both within each component and between components). Hydrogen bonds occur between the two strands and involve a base from one strand with a base from the second in complementary pairing.