Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Answer:
Explanation:
We shall consider direction towards left as positive Let the required velocity be v and let v makes an angle φ
Applying law of conservation of momentum along direction of original motion
m₁ v₁ - m₂ v₂ = m₂v₃ - m₁ v₄
0.132 x 1.25 - .143 x 1.14 = 1.03 cos43 x .143 - v cos θ
v cos θ = .8
Applying law of conservation of momentum along direction perpendicular to direction of original motion
1.03 sin 43 x .143 = .132 x v sinθ
v sinθ = .76
squaring and adding
v² = .76 ² + .8²
v = 1.1 m /s
Tan θ = .76 / .8
θ = 44°
Answer: the electromagnetic spectrum
Explanation:
I’m not sure but I think this is it!
aumenta su velocidad de 60 a 100 Km/h en 20 segundos. Calcular la fuerza resultante que actúa sobre el coche y el espacio recorrido en ese tiempo