Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N
Answer:
Tendons connect muscle to bone. These tough, yet flexible, bands of fibrous tissue attach the skeletal muscles to the bones they move. Essentially, tendons enable you to move; think of them as intermediaries between muscles and bones.
Hope this helps! (:
Answer:
See below
Explanation:
Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N
no work is done by this force
Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N
work of friction = 7.55 * 2 m = 15.1 j
Force Downplane = mg sin 53 = 62.61 N
work = 62.61 * 2 = 125.22 j
Net Force downplane = force downplane - force friction = 55.06 N
net Work = force * distance = 55.06 N * 2 M = 110.12 j
Answer:
Explanation:
s = s₀ + v₀t + ½at²
s = 0 + 0(15) + ½(6)(15²)
s = 675 m
Not sure what the free fall acceleration is needed for, but if the object is dropped from a high enough point, it will travel in 15 seconds
s = ½10(15²) = 2250 m if air resistance is ignored
Using the equation E = hc/λ we can find out how much energy a single photon of wavelength 193 nm has. E = Planck Constant * Speed of Light/193 nm