Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 
... then your weight is <em>25.2 lbf</em> on the moon.
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

Answer:

Explanation:
The temperature in stratosphere is generally about 270 K
molecular weight of an ozone molecule = 48 gm/mole
now formula for most probable velocity

plugging the values we get

