Answer:
A) 443 Hz
B) She has to loosen the string
Explanation:
A) Given;
Beat frequency;f_beat = 3 Hz
Frequency of electronically generated tone; f_e = 440 Hz
We know that formula for beat frequency is given by;
f_beat = |f1 - f2|
Now, applying it to this question, we have;
f_beat = f_v - f_e
Where f_v is frequency of the note played by the violinist
Thus, plugging in the relevant values;
3 = f_v - 440
f_v = 3 + 440
f_v = 443 Hz
B) In the concept of wave travelling in a string, the frequency is directly proportional to the square root of the force acting on the string.
Now, for the violinist to get her violin perfectly tuned to concert A from what it was when she heard the 3-Hz beats, the beat frequency will have to be zero. Which means it has to decrease by 3 Hz. For it to decrease, it means that the force applied has to decrease as we have seen that frequency is directly proportional to the square root of the force acting on the string.
Thus, she would have to loosen the string.
I would say false because the volume of gas depends on several things the amount of matter in the volume , the pressure and the temperature. So the answer would be false in my opinion. Because mass is not the only factor
Answer:
the phenomenon whereby a pair of particles are generated in such a way that the individual quantum states of each are indefinite until measured, and the act of measuring one determines the result of measuring the other, even when at a distance from each other.
Given that,
bug speed, v= 0.85 m/s
time, t =42 s
Final position of bug on meter stick was 27 cm
Starting position of bug on meter stick = ?
Since we know that,
s = vt
s= 0.85*42 = 35.7 cm
this is the distance covered by bug in the given time and velocity.
since the bug is moving in negative direction, starting point will be:
27.0 cm+ 35.7 cm = 62.7 cm
The bugs starting position on meter stick was 62.7 cm.