1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Trava [24]
3 years ago
6

Squids and octopuses propel themselves by expelling water. They do this by keeping water in a cavity and then suddenly contracti

ng the cavity to force out the water through an opening. A 6.50 kg squid (including the water in the cavity) at rest suddenly sees a dangerous predator. A. If the squid has 1.55 kg of water in its cavity, at what speed must it expel this water to suddenly achieve a speed of 2.60 m/s to escape the predator? Neglect any drag effects of the surrounding water.
B. How much kinetic energy does the squid create by this maneuver?
Physics
1 answer:
Alex3 years ago
4 0

Answer:

A) The speed of the water must be 8.30 m/s.

B) Total kinetic energy created by this maneuver is 70.12 Joules.

Explanation:

A) Mass of squid with water = 6.50 kg

Mass of water in squid cavuty = 1.55 kg

Mass of squid = m_1=6.50 kg- 1.55 kg=4.95 kg

Velocity achieved by squid = v_1=2.60 m/s

Momentum gained by squid = P=m_1v_1

Mass of water = m_2=1.55 kg

Velocity by which water was released by squid = v_2

Momentum gained by water but in opposite direction = P'=m_2v_2

P = P'

m_1v_1=m_2v_2

v_2=\frac{m_1v_1}{m_2}=\frac{4.95 kg\times 2.60 m/s}{1.55 kg}=8.30 m/s

B) Kinetic energy does the squid create by this maneuver:

Kinetic energy of squid = K.E  =\frac{1}{2}m_1v_1^{2}

Kinetic energy of water = K.E' = \frac{1}{2}m_2v_2^{2}

Total kinetic energy created by this maneuver:

K.E+K.E'=\frac{1}{2}m_1v_1^{2}+\frac{1}{2}m_2v_2^{2}

=\frac{1}{2}\times 4.95 kg\times (2.60 m/s)^2+\frac{1}{2}\times 1.55 kg\times (8.30 m/s)^2=70.12 Joules

You might be interested in
How light is channelled down an optical fibre
coldgirl [10]

Explanation:

Suppose you want to shine a flashlight beam down a long, straight hallway. Just point the beam straight down the hallway -- light travels in straight lines, so it is no problem. What if the hallway has a bend in it? You could place a mirror at the bend to reflect the light beam around the corner. What if the hallway is very winding with multiple bends? You might line the walls with mirrors and angle the beam so that it bounces from side-to-side all along the hallway. This is exactly what happens in an optical fiber.

The light in a fiber-optic cable travels through the core (hallway) by constantly bouncing from the cladding (mirror-lined walls), a principle called total internal reflection. Because the cladding does not absorb any light from the core, the light wave can travel great distances.

However, some of the light signal degrades within the fiber, mostly due to impurities in the glass. The extent that the signal degrades depends on the purity of the glass and the wavelength of the transmitted light (for example, 850 nm = 60 to 75 percent/km; 1,300 nm = 50 to 60 percent/km; 1,550 nm is greater than 50 percent/km). Some premium optical fibers show much less signal degradation -- less than 10 percent/km at 1,550 nm.

1

3 0
3 years ago
What is the meaning of physics​
Valentin [98]

Answer:

the branch of science concerned with the nature and properties of matter and energy

8 0
3 years ago
Please answer the one you know!
tresset_1 [31]
#8 positive kinetic energy
3 0
2 years ago
When a loose brick is resting on a wall, it has energy. When the brick is pushed off the wall and is falling down, the amount of
OLga [1]
Potential
Potential
Kinetic
5 0
3 years ago
Read 2 more answers
A basketball is held over head at a height of 2.4 m. The ball is lobbed to a teammate at 8 m/s at an angle of 40'. If the ball i
cupoosta [38]

Explanation:

since both the teammates are of the same height, their height won't matter. Because now the basketball won't cover any vertical distance.

We have to calculate its range the horizontal distance covered by it when tossed from one teammate to the other.

range can be calculated by the formula :-

\boxed{\mathfrak{range =  \frac{  u  {}^{2}   \sin 2\theta }{g} }}

u is the velocity during its take off and \theta is the angle at which its thrown

Given that

  • u = 8m/ s
  • \theta = 40°

calculating range using the above formula

= \frac{ {8}^{2} \sin2(40)  }{10}

=  \frac{64 \times  \sin(80) }{10}

value of sin 80 = 0. 985

=  \frac{64 \times 0.985}{10}

=  \frac{63.027}{10}

= 6.3027

Hence,

\mathfrak { \blue{the \: teammate \: is \:  \red{\underline{6.3027 \: meters} }\: away } }

7 0
3 years ago
Other questions:
  • How do mass and speed affect kinetic energy?
    14·2 answers
  • A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it
    14·1 answer
  • How does the energy moves from the suns core to the photosphere?
    5·1 answer
  • What does a simple circuit require?
    11·2 answers
  • A person hangs from a nylon rope (Young's modulus of 5 x 109 N/m2) as seen in the picture below. The rope stretches by 2 % and h
    6·1 answer
  • A car is traveling 20 meters per second and is brought to rest by applying brakes over a period of 4 seconds. What is the averag
    14·1 answer
  • A power source of 6.0 V is attached to the ends of a<br> capacitor. The charge is 12 C.
    15·1 answer
  • Season and date for this person
    11·2 answers
  • Calculate the total momentum of the three-sphere system if the three spheres are swung at −1.0 msto the left.
    8·1 answer
  • For typical rubber-on-concrete friction, what is the shortest time in which a car could accelerate from 0 to 70 mph? suppose tha
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!