Answer:
A) 15.0 years
Explanation:
Due to the distance to the star system is in light-year units, we can compute the time by using:

then, Rob will take to complete the trip about 15 light-years.
hope this helps!!
When there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
<h3>What is an hazard?</h3>
Hazard refers to any obstacle or other feature which causes risk or danger.
Living organisms respond to hazards via the production of adrenaline hormone. This hormone causes a flight response away from the hazard.
Therefore, when there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
Learn more about hazards at: brainly.com/question/5338299
Answer: The distance is 723.4km
Explanation:
The velocity of the transverse waves is 8.9km/s
The velocity of the longitudinal wave is 5.1 km/s
The transverse one reaches 68 seconds before the longitudinal.
if the distance is X, we know that:
X/(9.8km/s) = T1
X/(5.1km/s) = T2
T2 = T1 + 68s
Where T1 and T2 are the time that each wave needs to reach the sesmograph.
We replace the third equation into the second and get:
X/(9.8km/s) = T1
X/(5.1km/s) = T1 + 68s
Now, we can replace T1 from the first equation into the second one:
X/(5.1km/s) = X/(9.8km/s) + 68s
Now we can solve it for X and find the distance.
X/(5.1km/s) - X/(9.8km/s) = 68s
X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s
X = 68s/0.094s/km = 723.4 km