X-rays have shorter wavelength than visible light. But that's hardly the reason that they're used for medical imaging. xrays have much higher frequencies then visible light which means they have much greater penetrating ability. with xrays you can see inside the body. you can't do that with a visible flashlight no matter how bright and powerful it is.
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Answer:
The answer is 576.0473
Explanation:
Hope this helps.
Please mark my answer as brainliest?
Answer:D. λfilm/4
Explanation: Destructive interference is a type of wave interference which means the coming together or over-lapping of two opposing waves creating No effect or the Cancellation of the wave impact. An example of destructive wave is when Noise cancel the effect of sound from a head phone.
The film thickness will need to be increased by λfilm/4 for it to be able to give a destructive interference.
An electrical <span>current is </span>caused<span> by </span>flow<span> of free electrons from one atom to another. </span>