I believe that if you touch a metal sphere with a plastic straw, the straw would not have enough strength to push it. So in that case, the metal sphere will not move and will stay in one place.
Please rate a 5 star
Assuming Earth's gravity, the formula for the flight of the particle is:
<span>s(t) = -16t^2 + vt + s = -16t^2 + 144t + 160. </span>
<span>This has a maximum when t = -b/(2a) = -144/[2(-16)] = -144/(-32) = 9/2. </span>
<span>Therefore, the maximum height is s(9/2) = -16(9/2)^2 + 144(9/2) + 160 = 484 feet. </span>
Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
Answer:
-8.56V
Explanation:
Our values are given by,
e = 6.04 V
Φ = 30.3
VC = 5.32
We can calculate the voltage across the circuit with the emf formula, that is,




Now, Using Kirchoff Voltage Law,


Finally we have the potential difference across the inductor.

There is no <span>radioactive decay</span>