Answer:
Option 3 is the best option that compares the pair of intersecting rays with the angle
Step-by-step explanation:
The definition of angle says that an angle is a shape that is produced by the intersection of two rays that have a common end point.
A ray is a line segment that has only one end point and is extended infinitely in a unique direction
So Yeah. :) Hope I've helped
Answer:
Im confused what your trying to get at is there a picture or something
Step-by-step explanation:
The equation of the straight line is given by 5y-x=6
An equation can be used to describe a straight line drawn on the Cartesian Plane. These equations have a generic structure and can change based on the slope and where the line intersects the axes.
We will greatly simplify this issue by utilizing the fact that this triangle is specified as a right triangle. We would have had to establish the presence of a right angle if it had been presented as a general triangle.
The segment QR is the hypotenuse of the triangle.
Any side's altitude is located along a line that is perpendicular to that side. We are aware that the slopes of perpendicular lines are negative reciprocals, or:
Slope of line joining Q(3, 5) and R(5, -5)
m=
Hence slope is= -10/2= -5
Now we know that for two perpendicular line the slope of one line is the negative reciprocal of the other.
Slope of line perpendicular to QR=1/5
This line passes through P(-1,1)
Equation of the straight line that passes through (1,-1) and with a slope of 1/5 is given by:
Substituting the values we get:
y-1=1/5(x+1)
or,5y-5=x+1
or,5y-x=6
Hence the equation of the required line is : 5y-x=6
To learn more about straight lines visit:
brainly.com/question/17757770
#SPJ4
<span><span>Graph <span>x2<span> = 4</span>y</span><span> and state the vertex, focus, axis of symmetry, and directrix.</span></span><span>This is the same graphing that I've done in the past: </span><span>y = (1/4)x2</span><span>. So I'll do the graph as usual:</span></span><span> </span><span>The vertex is obviously at the origin, but I need to "show" this "algebraically" by rearranging the given equation into the conics form:<span>x2 = 4y</span> Copyright © Elizabeth Stapel 2010-2011 All Rights Reserved<span>
(x – 0)2 = 4(y – 0)</span><span>This rearrangement "shows" that the vertex is at </span><span>(h, k) = (0, 0)</span><span>. The axis of symmetry is the vertical line right through the vertex: </span><span>x = 0</span>. (I can always check my graph, if I'm not sure about this.) The focus is "p" units from the vertex. Since the focus is "inside" the parabola and since this is a "right side up" graph, the focus has to be above the vertex.<span>From the conics form of the equation, shown above, I look at what's multiplied on the unsquaredpart and see that </span><span>4p = 4</span><span>, so </span><span>p = 1</span><span>. Then the focus is one unit above the vertex, at </span>(0, 1)<span>, and the directrix is the horizontal line </span><span>y = –1</span>, one unit below the vertex.<span>vertex: </span>(0, 0)<span>; focus: </span>(0, 1)<span>; axis of symmetry: </span><span>x<span> = 0</span></span><span>; directrix: </span><span>y<span> = –1</span></span></span><span><span><span>Graph </span><span>y2<span> + 10</span>y<span> + </span>x<span> + 25 = 0</span></span>, and state the vertex, focus, axis of symmetry, and directrix.</span><span>Since the </span>y<span> is squared in this equation, rather than the </span>x<span>, then this is a "sideways" parabola. To graph, I'll do my T-chart backwards, picking </span>y<span>-values first and then finding the corresponding </span>x<span>-values for </span><span>x = –y2 – 10y – 25</span>:<span>To convert the equation into conics form and find the exact vertex, etc, I'll need to convert the equation to perfect-square form. In this case, the squared side is already a perfect square, so:</span><span>y2 + 10y + 25 = –x</span> <span>
(y + 5)2 = –1(x – 0)</span><span>This tells me that </span><span>4p = –1</span><span>, so </span><span>p = –1/4</span><span>. Since the parabola opens to the left, then the focus is </span>1/4<span> units to the left of the vertex. I can see from the equation above that the vertex is at </span><span>(h, k) = (0, –5)</span><span>, so then the focus must be at </span>(–1/4, –5)<span>. The parabola is sideways, so the axis of symmetry is, too. The directrix, being perpendicular to the axis of symmetry, is then vertical, and is </span>1/4<span> units to the right of the vertex. Putting this all together, I get:</span><span>vertex: </span>(0, –5)<span>; focus: </span>(–1/4, –5)<span>; axis of symmetry: </span><span>y<span> = –5</span></span><span>; directrix: </span><span>x<span> = 1/4</span></span></span><span><span>Find the vertex and focus of </span><span>y2<span> + 6</span>y<span> + 12</span>x<span> – 15 = 0</span></span></span><span><span>The </span>y<span> part is squared, so this is a sideways parabola. I'll get the </span>y stuff by itself on one side of the equation, and then complete the square to convert this to conics form.<span>y2 + 6y – 15 = –12x</span> <span><span>
y</span>2 + 6y + 9 – 15 = –12x + 9</span> <span>
(y + 3)2 – 15 = –12x + 9</span> <span>
(y + 3)2 = –12x + 9 + 15 = –12x + 24</span> <span>
(y + 3)2 = –12(x – 2)</span> <span>
(y – (–3))2 = 4(–3)(x – 2)</span></span><span><span>Then the vertex is at </span><span>(h, k) = (2, –3)</span><span> and the value of </span>p<span> is </span>–3<span>. Since </span>y<span> is squared and </span>p<span> is negative, then this is a sideways parabola that opens to the left. This puts the focus </span>3 units to the left of the vertex.<span>vertex: </span>(2, –3)<span>; focus: </span><span>(–1, –3)</span><span>
</span></span>