Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer: Out of 118 elements, 94 occur naturally
Answer:
B. PROTONS EXHIBIT STRONGER PULL ON OUTER f ORBITALS
Explanation:
Lanthanide contraction is the greater than normal decrease in the ionic radius of the lanthanide series from atomic number 57 to atomic number 71. This decrease is rather not expected of the ionic radii of these elements and they result in the greater decrease in the subsequent series of the lanthanides from the atomic number 72. The cause of which is as a result of the poor shielding effects of the nuclear charge around the electrons of the f orbitals. So therefore, protons are strongly pulled out of the 4f orbital and as a result of the poor shielding effect which causes the electrons of the 6s orbitals to be drawn more closer to the nucleus and hence resulting in a smaller atomic radii. It is worthy to note that the shielding effects of the inner electrons decreasing from s orbital to the f orbital; that is s > p > d > f. So from the decrease in the shielding effects from s to the f orbitals, lanthanide contraction results from the inability of the orbitals far away from s like the 4f orbiatls to shield the outermost shells of the lanthanide elements. So the cause of lanthanide contraction is the action of the protons which strongly pull the electrons of the f orbitals because of the poor shielding effects due to the distance of this orbital from the nucleus.
Answer:
Explanation:
When a Newton's Cradle with three marbles is pulled back and released, the mechanical energy is converted to potential elastic energy.
When a collision happens between the marbles causing a cycle of repeated motion, The elastic potential energy is converted to kinetic energy.
This transfer of energy will last for several cycles. If there is any energy lost, then the kinetic energy must have been converted to thermal energy or heat energy