The molecular weight of the substance.
Answer:
4.7 kJ/kmol-K
Explanation:
Using the Debye model the specific heat capacity in kJ/kmol-K
c = 12π⁴Nk(T/θ)³/5
where N = avogadro's number = 6.02 × 10²³ mol⁻¹, k = 1.38 × 10⁻²³ JK⁻¹, T = room temperature = 298 K and θ = Debye temperature = 2219 K
Substituting these values into c we have
c = 12π⁴Nk(T/θ)³/5
= 12π⁴(6.02 × 10²³ mol⁻¹)(1.38 × 10⁻²³ JK⁻¹)(298 K/2219 K)³/5
= 9710.83(298 K/2219 K)³/5
= 1942.17(0.1343)³
= 4.704 J/mol-K
= 4.704 × 10⁻³ kJ/10⁻³ kmol-K
= 4.704 kJ/kmol-K
≅ 4.7 kJ/kmol-K
So, the specific heat of diamond in kJ/kmol-K is 4.7 kJ/kmol-K
Answer:
157.8 g
Explanation:
Step 1: Write the balanced equation
Fe₂O₃ + 3 CO ⟶ 3 CO₂ + 2 Fe
Step 2: Calculate the moles corresponding to 209.7 g of Fe
The molar mass of Fe is 55.85 g/mol
209.7 g × 1 mol/55.85 g = 3.755 mol
Step 3: Calculate the moles of CO needed to produce 3.755 moles of Fe
The molar ratio of CO to Fe is 3:2. The moles of CO needed are 3/2 × 3.755 = 5.633 mol
Step 4: Calculate the mass corresponding to 5.633 moles of CO
The molar mass of CO is 28.01 g/mol.
5.633 mol × 28.01 g/mol = 157.8 g
Answer:
for example, a carbon atom weighs less than 2 × 10−23 g, and an electron .... Determine the numbers of protons, neutrons, and electrons in one of these iodine anions. ... We use the same symbol to indicate one atom of mercury (microscopic ... All known elements and their symbols are in the periodic table
Explanation:
The concept that this best illustrates is replication.