First, we calculate of the concentration of the H+ ions in the solution from the pH given. Then, calculate the new concentration after dilution. Calculation are as follows:
pH = -log[H+]
5 = -log[H+]
[H+] = 1 x 10^-5 M
M1V1 = M2V2
<span>1 x 10^-5 M (V1) = M2(100V1)
</span>M2 = 1 x 10^-7
pH = -log[<span>1 x 10^-7</span>]
pH = 7
Niterogen if I’m wrong please correct me
Answer:
1.25 x 10^15Hz
Explanation:
c = frequency x wavelength
c is the speed of light, which is equal to 3.00 x 10^8 m / s
frequency = c /wavelength
= (3.00 x 10^8m /s) / (2.40 x 10^-5 cm x 1 m /100cm)
= (3.00 x 10^8 m/s) / 2.40 x 10^-7m
= 1.25 x 10^15/s 1 / s = 1Hz
So, the Frequency = 1.25 x 10^15Hz
I hope this helped :)
Answer:
Correct answer is A.
Explanation:
Frequency is the number of oscillations that a wave have per unit time. Since time is measured in seconds, the wave with the highest frequency must register the highest number of oscillation per second. Hence, correct answer is A.
Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.