Answer:
0.01932 L
Explanation:
First we <u>convert 105 mM to M</u>:
Next we <u>convert 552 mL to L</u>:
Then we use the following equation:
Where:
We<u> input the given data</u>:
- 3 M * V₁ = 0.105 M * 0.552 L
And <u>solve for V₁</u>:
Answer:
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
slow
fast
To determine the net chemical equation, we will simply add the above two equations, we get:
![Rate=k[O_3][NO_2]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BO_3%5D%5BNO_2%5D%5E2)
Order with respect to
is 1 and Order with respect to
is 2.
Thus the rate law will be:
Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).