A - Sulfur dioxide is an ion because it contains 2 or more elements, and it is a solid
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>
A. Water can dissolve a wide variety of substances
C. Developing effective methods of food preservation
Explanation:
The development of effective methods of food preservation is a much more smaller and manageable problem that contributes to the complex problem.
The percentage of food rotting is not as a result of lack of an effective preservation technique as highlighted in the passage. It is due to the long distances of agricultural area from where the farms are located.
- To cut the loss, efficient and rapid transportation techniques needs to be put in place to carry the fruits and vegetables to the area where they are needed.
- This is the most complex problem that if solved can peg back food rot.
- Additional measures should be put in place to preserve the food.
Other options does not address the subject matter
learn more:
Preservation brainly.com/question/4853419
#learnwithBrainly