Answer:
In an ionic bonds, the metal loses electrons to become a positively charged cation, In which the nonmetal accepts those electrons to become a negatively charged anion.
Explanation:
Answer:
You're going to have to convert the grams to moles, and then multiply that with the ratio of heat produced to the ratio of CH4
First, we have to get how many grams of C & H & O in the compound:
- the mass of C on CO2 = mass of CO2*molar mass of C /molar mass of CO2
= 0.5213 * 12 / 44 = 0.142 g
- the mass of H atom on H2O = mass of H2O*molar mass of H / molar mass of H2O
=0.2835 * 2 / 18 = 0.0315 g
- the mass of O = the total mass - the mass of C atom - the mass of H atom
= 0.3 - 0.142 - 0.0315 = 0.1265 g
Convert the mass to mole by divided by molar mass
C(0.142/12) H(0.0315/2) O(0.1265/16)
C(0.0118) H(0.01575) O(0.0079) by dividing by the smallest value 0.0079
C1.504 H3.99 O1 by rounding to the nearst fraction
C3/2 H4/1 )1/1 multiply by 2
∴ the emprical formula C3H8O2
Among the choices given, the correct answer is the first option. Substance X most likely is a crystal, and substance Y most likely is a liquid. Substance X having a fixed volume describes a crystal because crystals occupy a certain volume. Substance Y is a liquid because liquids can still be compressed further in order to attain a more packed <span>structure.</span>
Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³