Hey There!
At neutralisation moles of H⁺ from HCl = moles of OH⁻ from Ca(OH)2 so :
0.204 * 42.8 / 1000 => 0.0087312 moles
Moles of Ca(OH)2 :
2 HCl + Ca(OH)2 = CaCl2 + 2 H2O
0.0087312 / 2 => 0.0043656 moles ( since each Ca(OH)2 ives 2 OH⁻ ions )
Therefore:
Molar mass Ca(OH)2 = 74.1 g/mol
mass = moles of Ca(OH)2 * molar mass
mass = 0.0043656 * 74.1
mass = 0.32 g of Ca(OH)2
Hope that helps!
Answer:
in some cases this is true a compound is a mixture of elements although it is actualy false the diffrence is actualy baced on what elements it is made of like sulfur Dioxide is when sulfur reacts with the contents of the air when burning and reacting but they arnt always diffrent most caces it is just what element you use.
Explanation:
Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.
Baking soda is sodium bicarbonate in anhydrous form without any water of crystallisation and it is widely used as dry fire extinguisher because of its alkali nature.