Water, H2O, HOH these are all the same compound just worded differently
Answer:
B. Alpha
Explanation:
Alpha decays always split into an element and He.
Beta decays always split into an element and e- (eletrons).
Gamma decays always split into an element and radiation.
I just know it’s not conductive or brittle
Answer:
(a) 282 kJ
(b) 67.4 Calories
Explanation:
(a) The molar enthalpy, ΔH = −2802.5 kJ/mol, means that the heat produced by the reaction is 2802.5 kJ per mol of glucose.
We can multiply the enthalpy by the number of moles of glucose to get the heat produced by the metabolism. Grams of glucose will be converted to moles using the molar mass of glucose (180.156 g/mol):
(18.1 g)(mol/180.156g)(2802.5 kJ/mol) = 282 kJ
(b) Using the result we obtained above, kJ will be converted to Calories using the conversion factor of 4.184J = 1 cal. Calorie with a capital C is the same as a kilocalorie.
(282 kJ)(1 cal/4.184J) = 67.4 kcal = 67.4 Calories
Answer: Thus the value of
is 110.25
Explanation:
Initial moles of
= 0.500 mole
Initial moles of
= 0.500 mole
Volume of container = 1 L
Initial concentration of
Initial concentration of
equilibrium concentration of
[/tex]
The given balanced equilibrium reaction is,

Initial conc. 0.500 M 0.500 M 0 M
At eqm. conc. (0.500-x) M (0.500-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[IBr]^2}{[Br_2]\times [I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BBr_2%5D%5Ctimes%20%5BI_2%5D%7D)

we are given : 2x = 0.84 M
x= 0.42
Now put all the given values in this expression, we get :


Thus the value of the equilibrium constant is 110.25