Answer:
Volume occupied by oxygen gas at 15 degree centigrade is equal to
centimeter cube
Explanation:
Assuming Pressure is constant.

where T1 and T2 are temperature in Kelvin
Substituting the give values we get-


Volume occupied by oxygen gas at 15 degree centigrade is equal to
centimeter cube
H2O is the Bronsted-Lowry base because it accepts the hydrogen ion to become H3O after the reaction is complete.
Answer:
According to Kinetic Molecular Theory, an increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often. If the reaction is kept at constant pressure, they must stay farther apart, and an increase in volume will compensate for the increase in particle collision with the surface of the container.
Explanation:
Answer:
heat from the sun,evaporation/transpiration,condensation precipitation
Explanation: