<span>Answer is: 2940 mL of
the HCL solution.</span>
c₁(HCl) = 10.0 M.
V₂(AgNO₃<span>) = ?.
c</span>₂(AgNO₃<span>) = 0.85 M.
V</span>₁(AgNO₃<span>) = 250 mL </span>÷ 1000 mL/L = 0.25 L.
<span>
c</span>₁<span> - original concentration of the solution, before it
gets diluted.
c</span>₂<span> - final concentration of the solution, after dilution.
V</span>₁<span> - volume to be diluted.
V</span>₂<span> - final volume after dilution.
c</span>₁ · V₁ = c₂ · V₂<span>.
V</span>₂(HCl) = c₁ · V₁ ÷ c₂.
<span>
V</span>₂(HCl) = 10 M · 0.25 L ÷ 0.85 M.
<span>
V</span>₂(HCl) = 2.94 L ·
1000 mL = 2940 mL.
Answer:
The NaCl concentration will be 0.03 M.
Explanation:
Given data:
Initial volume = V₁ = 56.98 mL (56.98/1000 = 0.05698 L)
Initial concentration = M₁= 0.5894 M
Final volume = V₂= 1.20 L
Final concentration = M₂= ?
Solution:
By diluting the solution volume of solution will increase while number of moles of solute remain the same.
Formula:
Initial concentration × Initial volume = Final concentration × Final volume
M₁V₁ = M₂V₂
M₂ = M₁V₁ / V₂
M₂ = 0.5894 M × 0.05698 L / 1.20 L
M₂ = 0.0336 M /1.20
M₂ = 0.03 M
Answer:
the rock layers of the Grand Canyon
Explanation:
Steno's law are laws that applied to sedimentary rocks. These laws helps in understanding sedimentary sequences.
Sedimentary rocks are derived from the deposition of pre-existing rocks in basins. In order to understand some important relationships between these rock layers, Steno's law offer a good insight.
Steno's law are often applied when we want to do relative dating of rock layers. Some of the laws are:
- Law of superposition of strata
- Law of original horizontality
- Law of lateral continuity
- Law of inclusion
- Law of fossil and fauna succession
These laws helps to interpret sedimentary rock sequences better.
Answer:
the boiling point of water is 100°C
Explanation:
I think that cells are reproduced sexually because i dont think there's another option. Right?