1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
3 years ago
14

Which of the following is not found in living things? Which of the following is not found in living things?

Physics
2 answers:
ivann1987 [24]3 years ago
6 0
B would be the answer
inna [77]3 years ago
5 0

Answer:

PETROLEUM

Explanation:

THIS IS THE ANSWER BECAUSE ALL THE REST ARE FOUND IN LIVING THINGS

You might be interested in
What is impulse measured in
MrMuchimi
Impulse = Force * time
5 0
3 years ago
A ___ is the unit of measurement for force.
bogdanovich [222]

Answer:

Newton (N)

Explanation:

A newton is the unit of measurement for force

4 0
3 years ago
Suppose you want to determine the resistance of a resistor that is nominally 100 . You should be able to apply 10 V across the r
Butoxors [25]

Answer:

a) For y = 102 mA, R = 98.039 ohms

For y = 97 mA, R = 103.09 ohms

b) Check explanatios for b

Explanation:

Applied voltage, V = 10 V

For the first measurement, current y_{1} = 102 mA = 0.102 A

According to ohm's law, V = IR

R = V/I

Here, I = y_{1}

R = \frac{V}{y_{1} } \\R = \frac{10}{0.102} \\R = 98.039 ohms

For the second measurement, current y_{2} = 97 mA = 0.097 A

R = \frac{V}{y_{2} }

R = \frac{10}{0.097} \\R = 103 .09 ohms

b) y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}

y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]

y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right]

A linear equation is of the form y = Gx

The nominal value of the resistance = 100 ohms

x = \left[\begin{array}{ccc}100\end{array}\right]

\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3}  \end{array}\right] =  \left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2}  \end{array}\right] =  \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5}  \end{array}\right]

3 0
2 years ago
If the person drops box from 3.8 m how much energy is transferred from potential energy to kinetic energy
kotykmax [81]

Answer:

Kinetic energy

When work is done the energy is transferred from one type to another. This transferred energy may appear as kinetic energy.

For example, when you pedal your bicycle so that its speed increases, you are doing work to transfer chemical energy from your muscles to the kinetic energy of the bicycle.

Kinetic energy is the energy an object possesses by virtue of its movement. The amount of kinetic energy possessed by a moving object depends on the mass of the object and its speed. The greater the mass and the speed of the object the greater its kinetic energy.

The kinetic energy Ek of an object of mass m at a speed v is given by the relationship

{E_k} = \frac{1}{2}m{v^2}

m is the mass of the object in kilograms ( kg) and v is the speed of the object in metres per second ( m\,s^{-1}).

Explanation:

When work is done on an object it may also lead to energy being transferred to the object in the form of gravitational potential energy of the object.

Gravitational potential energy is the energy an object has by virtue of its position above the surface of the Earth. When an object is lifted, work is done. When work is done in raising the height of an object, energy is transferred as a gain in the gravitational potential energy of the object.

For example, suppose you lift a suitcase of mass m through a height h. The weight W of the suit case is a downward force of size mg. In lifting the suitcase, you would have to pull upwards on it with a force equal in size to its weight, mg.

Two suitcases. One has a green force arrow pointing up labelled F and a purple force arrow pointing down labelled 'Weight = mg'. The other case is raised by a height labelled h.

Suitcases with forces and height labelled

When this force (equal to the weight mg, but upwards) is applied to the suitcase over the distance h:

Work\,done=force\,\times\,distance\,upwards=mg\,\times\,h

This energy is transferred to potential energy when raising the object through a known height.

Energy = mass \times gravitational\,field\,strength \times height

E = m \times g \times h

This is the relationship used to calculate gravitational potential energy.

{E_p} = mgh

where m is the mass of the object in kilograms (kg), g is the gravitational field strength, (for positions near the surface of the Earth g = 9∙8 newtons per kilogram ( N kg ^{-1} and h is the height above the surface of the Earth in metres ( m).

8 0
3 years ago
With a diameter that's 11 times larger than Earth's, _______ is the largest planet.
katovenus [111]
With a diameter that's 11 times larger than Earth's, Jupiter is the largest planet

6 0
3 years ago
Other questions:
  • A humanoid skeleton is found buried in the ashes of a volcano that erupted between 10,000 and 12,000 years ago. when scientists
    6·2 answers
  • Rita conducts an experiment on how the amount of precipitation each fall affects
    9·1 answer
  • In the solar panel system presented in the video which of the following was necessary to generate usable electrical current for
    11·1 answer
  • When light with a wavelength of 209 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic ener
    10·1 answer
  • (a) What is the best coefficient of performance for a refrigerator that cools an environment at −30.0ºC and has heat transfer to
    14·1 answer
  • Farming and fishing are ways of harvesting the oceans A.sodium chloride B.oil and natural gas C. Living resources D.nonrenewable
    5·2 answers
  • A high speed train is traveling at a speed of 44.7 m/s (100 mph) when the engineer sounds the 415 Hz warning horn. The speed of
    8·1 answer
  • A magnetic field will move-
    11·1 answer
  • What is sound wave and examples
    9·1 answer
  • The charge of an electron is 1.6x10^'' C. How many electrons does it take to make 1 C of charge?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!