Answer:
(c) 16 m/s²
Explanation:
The position is
.
The velocity is the first time-derivative of <em>r(t).</em>
<em />
<em />
The acceleration is the first time-derivative of the velocity.

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

Its magnitude is 16 m/s².
Answer: At that moment, all the baseball's kinetic energy has been converted to potential energy.
Explanation: I took the test
Answer:
The horizontal component of her velocity is approximately 1.389 m/s
The vertical component of her velocity is approximately 7.878 m/s
Explanation:
The given question parameters are;
The initial velocity with which Margaret leaps, v = 8.0 m/s
The angle to the horizontal with which she jumps, θ = 80° to the horizontal
The horizontal component of her velocity, vₓ = v × cos(θ)
∴ vₓ = 8.0 × cos(80°) ≈ 1.389
The horizontal component of her velocity, vₓ ≈ 1.389 m/s
The vertical component of her velocity,
= v × sin(θ)
∴
= 8.0 × sin(80°) ≈ 7.878
The vertical component of her velocity,
≈ 7.878 m/s.
Answer:
D &B
Explanation:
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force
Answer:

Explanation:
We have the following data:
- distance covered by the child: d = 2 m (length of the slide)
- time taken to cover this distance: t = 3 s
- initial velocity of the child: 0 m/s (he starts from rest)
So we can find the acceleration by using the equation:

Where a is the acceleration.
Substituting the values and solving for a,
