Answer:
The magnetic field through the wire must be changing
Explanation:
According to Faraday's law, the induced emf, ε in a metallic conductor is directly proportional to the rate of change of magnetic flux,Φ through it. This is stated mathematically as ε = dΦ/dt.
Now for the wire, the magnetic flux through it is given by Φ = ABcosθ where A = cross-sectional area of wire, B = magnetic field and θ = angle between A and B.
So, dΦ/dt = dABcosθ/dt
Since A and B are constant,
dΦ/dt = ABdcosθ/dt = -(dθ/dt)ABsinθ
Since dθ/dt implies a change in the angle between A and B, since A is constant, it implies that B must be rotating.
So, <u>for an electric current (or voltage) to be produced in the wire, the magnetic field must be rotating or changing</u>.
Its this (couldn’t write it down on here properly so i had to ss it)
Basically, it’s just the difference between the x values at the top and the difference between the Y values at the bottom.
Answer
b. the number of atoms in each molecule.
Explanation:
My educated guess : 21.2 deg
Explanation:
sbsbbsbshdi she sgebsbwhwjge hsshhdhsshshsuus she's used ydhdyuyddhdhdy hehehe due susshsuhdhdhd ffujfufudhdndndjd d