Where are the images?!?!?
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
We know that momentum = mass times velocity
So a. 720 kgm/s
Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

It takes the shape of the cup and it can be sucked through a straw