Answer: J.J Thomson
Explanation: J. J. Thomson, who discovered the electron in 1897, proposed the plum pudding model of the atom in 1904 before the discovery of the atomic nucleus in order to include the electron in the atomic model.
Answer:
The equation of motion is 

Explanation:
Lets calculate
The weight attached to the spring is 24 pounds
Acceleration due to gravity is 
Assume x , is spring stretched length is ,4 inches
Converting the length inches into feet 
The weight (W=mg) is balanced by restoring force ks at equilibrium position
mg=kx
⇒ 
The spring constant , 
= 72
If the mass is displaced from its equilibrium position by an amount x, then the differential equation is



Auxiliary equation is, 

=
Thus , the solution is 

The mass is released from the rest x'(0) = 0
=0


Therefore ,

Since , the mass is released from the rest from 4 inches
inches
feet
feet
Therefore , the equation of motion is 
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
More people walk to school or work hope this helps