The standard unit is KW/hr, = 1,000W/hr.
(85 + 60) = 145W.
You need to find its fraction of 1,000W., so (145/1000) = 0.145 KWH.
(0.145 x 10p) = 1.45p. per hr.
Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
<h2>Given that,</h2>
Mass of two bumper cars, m₁ = m₂ = 125 kg
Initial speed of car X is, u₁ = 10 m/s
Initial speed of car Z is, u₂ = -12 m/s
Final speed of car Z, v₂ = 10 m/s
We need to find the final speed of car X after the collision. Let v₁ is its final speed. Using the conservation of momentum to find it as follows :
v₁ is the final speed of car X.
So, car X will move with a velocity of -12 m/s.
(D)
Explanation:
The more massive an object is, the greater is the curvature that they produce on the space-time around it.