Answer:
0.017 N
Explanation:
The relevant relation is ...
F = GMm/r²
where G is the universal gravitational constant, 6.67408 × 10^-11 m^3·kg^-1·s^-2, M and m are the masses of the objects, and r is the distance between them.
__
Filling in the given numbers, we find the force to be ...
F = (6.67408 × 10^-11 m^3·kg^-1·s^-2)(8.7 × 10^20 kg)(77 kg)/(1.6 × 10^7 m)^2
where m in this expression is the unit "meters".
F = 6.67408 · 8.7 · 77/2.56 × 10^(-11 +20 -2·7) N ≈ 0.017 N
The asteroid exerts a force of about 0.017 N on Sally.
__
<em>Additional comment</em>
That's about 0.000023 times the force of Earth's gravity.
Answer:
18.33 Ns
Explanation:
As the pitch back speed has the opposite direction as before, the change in velocity would be

So the change in momentum of the ball would be the product of its velocity change and its mass

This is equals to the impulse acted on the ball by the bat, which is 18.33 Ns
Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km
Answer:
Igneous rock , formed by the cooling of magma (molten rock) inside the Earth or on the surface. Sedimentary rocks, formed from the products of weathering by cementation or precipitation on the Earth's surface. Metamorphic rocks, formed by temperature and pressure changes inside the Earth.
Explanation:
The information was found on:
https://msnucleus.org/membership/html/k-6/rc/rocks/3/rcr3_1a.html