Yes, blood is a tissue. It is a tissue because it is a group of similar cells that have functions.
The value of normal force as the slider passes point B is
The value of h when the normal force is zero
<h3>How to solve for the normal force</h3>
The normal force is calculated using the work energy principle which is applied as below
K₁ + U₁ = K₂
k represents kinetic energy
U represents potential energy
the subscripts 1,2 , and 3 = a, b, and c
for 1 to 2
K₁ + W₁ = K₂
0 + mg(h + R) = 0.5mv²₂
g(h + R) = 0.5v²₂
v²₂ = 2g(1.5R + R)
v²₂ = 2g(2.5R)
v²₂ = 5gR
Using summation of forces at B
Normal force, N = ma + mg
N = m(a + g)
N = m(v²₂/R + g)
N = m(5gR/R + g)
N = 6mg
for 1 to 3
K₁ + W₁ = K₃ + W₃
0 + mgh = 0.5mv²₃ + mgR
gh = 0.5v²₃ + gR
0.5v²₃ = gh - gR
v²₃ = 2g(h - R)
at C
for normal force to be zero
ma = mg
v²₃/R = g
v²₃ = gR
and v²₃ = 2g(h - R)
gR = 2gh - 2gR
gR + 2gR = 2gh
3gR = 2gh
3R/2 = h
Learn more about normal force at:
brainly.com/question/20432136
#SPJ1
Nitrogen is the most abundant of the gases present in the atmosphere. 78 percent of the atmospheric air comprises of nitrogen, oxygen makes up for 21 percent and all other gases make up for the remaining one percent. Oxygen is a highly flammable gas and in the absence of nitrogen it would not have been possible to utilize this atmospheric oxygen, hence the presence of nitrogen reduces its flammability and also neutralizes the toxicity of other gases.
Answer:
208.33 W
141.26626 seconds
Explanation:
E = Energy = 
t = Time taken = 8 h
m = Mass = 2000 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of platform = 1.5 m
Power is obtained when we divide energy by time

The average useful power output of the person is 208.33 W
The energy in the next part would be the potential energy
The time taken would be

The time taken to lift the load is 141.26626 seconds
Given Information:
Wavelength = λ = 39.1 cm = 0.391 m
speed of sound = v = 344 m/s
linear density = μ = 0.660 g/m = 0.00066 kg/m
tension = T = 160 N
Required Information:
Length of the vibrating string = L = ?
Answer:
Length of the vibrating string = 0.28 m
Explanation:
The frequency of beautiful note is
f = v/λ
f = 344/0.391
f = 879.79 Hz
As we know, the speed of the wave is
v = √T/μ
v = √160/0.00066
v = 492.36 m/s
The wavelength of the string is
λ = v/f
λ = 492.36/879.79
λ = 0.5596 m
and finally the length of the vibrating string is
λ = 2L
L = λ/2
L = 0.5596/2
L = 0.28 m
Therefore, the vibrating section of the violin string is 0.28 m long.