Answer:
Explanation:
A 40kg child throw stone of 0.5kg
At a direction of 5m/s
Recoil can be calculated using recoil of a gun formula
m_1•v_1 + m_2•v_2
m_1•v_1 = -m_2•v_2
The negative sign show that the momentum of the boy is directed oppositely to that of the stone
m_1 Is mass of boy
v_1 is the recoil velocity of the boy
m_2 is mass of stone
v_2 is the velocity of stone
Then,
m_1•v_1 = -m_2•v_2
40•v_1 = -0.5 × 5
40•v_1 = -2.5
v_1 = -2.5 / 40
v_1 = -0.0625 m/s
The recoil velocity of the boy is 0.0625 m/s
It is gravity¿ what is the question?
Answer:
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
Let unknown velocity be v, mass of billiard ball be m and east direction be positive x axis.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = m x 2i + m x (-1)i = m i
Final momentum = m x v + m x 1.41 j = mv + 1.41 m j
Comparing
mi = mv + 1.41 m j
v = i - 1.41 j
Magnitude of velocity
Direction,
Velocity is 1.73 m/s along 54.65° south of east.
Answer:
ok
Explanation:
The Earth is made of several subsystems or "spheres" that interact to form a complex and continuously changing whole called the Earth system. Scale
Processes operating in the Earth system take place on spatial scales varying from fractions of millimeters to thousands of kilometers, and on time scales that range from milliseconds to billions of years.
Examples of instantaneous - breathing; rotation of the Earth; earthquake
Examples of long term - making coal; plate tectonics
Cycles
The Earth system is characterized by numerous overlapping cycles in which matter is recycled over and over again. Cycles involve multiple spheres and systems interactions.
Examples of cycles: day and night; rock cycle; seasons
Energy
The Earth system is powered by energy from two major sources: the Sun and the planet's internal heat.
Humans and the Earth System
People are part of the Earth system and they impact and are impacted by its materials and processes.
Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:
