Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ =
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ =
v₂ = 15.24 m / s
Oh my baby boy your back th anwsers is <span>A. Recycling materials help decrease the amount of new
materials taken from the environment. </span>
Answer:
10000 Bq / 625 Pq = 16
Radioactivity has decreased by a factor of 16
2^4 = 16
So the sample has gone thru 4 half-lives
24 da / 4 = 6 da
6 da is the half-life
The answer is: To have easy access to a coolant for the reactor.
Hope this helps!:)
~Scarlett
Answer:
(a). The velocity of the object is -2.496 m/s.
(b). The total distance of the object travels during the fall is 23.80 m.
Explanation:
Given that,
Time = 1.95 s
Distance = 23.5 m
(a). We need to calculate the velocity
Using equation of motion

Put the value into the formula



(b). We need to calculate the total distance the object travels during the fall
Using equation of motion

Put the value in the equation



The total time is


We need to calculate the distance
Using equation of motion

Put the value into the formula


Hence, (a). The velocity of the object is -2.496 m/s.
(b). The total distance of the object travels during the fall is 23.80 m.