1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
15

A paper pinwheel is spinning in the wind. Which statement is correct about the forces responsible for the rotation?

Physics
1 answer:
VikaD [51]3 years ago
3 0

Answer:

Only the perpendicular component of gravity is responsible for the rotation because wind points toward the pivot.

Explanation:

You might be interested in
How fast much an 816kg Volkswagen travel to have the same momentum as (a) a 2650kg Cadillac going 16.0 km/h? (b) a 9080-kg truck
Katyanochek1 [597]

Answer:

Explanation:

From the given information:

the car's momentum = momentum of the truck

∴

(a) 816 kg × v = 2650 kg × 16.0 km/h

v = (2650 kg × 16.0 km/h) /  816 kg

v = 51.96 km/hr

(b) 816 kg × v = 9080 kg × 16.0 km/h

v = (9080 kg × 16.0 km/h) /  816 kg

v = 178.04 km/hr

8 0
2 years ago
When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and
Andru [333]

Answer:

When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and viewer. Unlike other forms of social video, you’ll get more views and engagement if your video

is longer and repeats key points.

Explanation:

When broadcasting live on social media, one should be live for long because in this way one can get more views as audience will increase with time. There should be an interaction with the audience like answering their questions which they write in the comments section. These comments and views will make this video to the top of news feed. Secondly the most important thing is the content of the video. One must focus on the information or knowledge he/she wants to convey and must repeat the key points again and again so that one who has missed the important points will be able catch them later.

6 0
2 years ago
Tom is sitting facing forward in the train as it is getting ready to leave the station. He puts a smooth ball on the train floor
Vesnalui [34]

According to Newton's first law of motion, what happens to the ball is  the ball rolls backward.

<h3>What is the first law?</h3>

This means that an object at rest or in motion will remain uniformly rectilinear and tend to be in that state if the net force on it is zero.

In this case, we have to think that the ball is at rest and the train is moving with a velocity that way, the reaction of the ball will be to go in the opposite direction to the motion.

See more about  first law at brainly.com/question/3808473

#SPJ1

8 0
2 years ago
A high jumper jumps 2.04 m. If the jumper has a mass of 67 kg, what is his gravitational potential energy at the highest point i
Mariulka [41]

Answer: 1339.5 joules

Explanation:

Gravitational potential energy, GPE is the energy possessed by the jumper as he moves against gravity.

Thus, GPE = Mass m x Acceleration due to gravity g x Height h

Since Mass = 67kg

g = 9.8m/s^2

h = 2.04 metres

Thus, GPE = 67kg x 9.8m/s^2 x 2.04m

GPE = 1339.5 joules

Thus, the gravitational potential energy at the highest point is 1339.5 joules

3 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
2 years ago
Other questions:
  • Consider a magnesium wire (σ = 2.2 ✕ 107 Ω−1 · m−1) with a cross-sectional area of 1 mm2 (similar to your connecting wires) and
    10·1 answer
  • In what states does water appear on earth and on other planets?
    11·2 answers
  • A 15.0 mW laser puts out a narrow beam 2.00 mm indiameter.
    13·1 answer
  • Why are hurricanes considered more damaging than tornadoes when tornadoes have stronger winds
    12·2 answers
  • Which of the formulas represents anonpolar molecular?
    8·1 answer
  • A 12 V battery is connected to a 1200 Ω resistor. How much current is flowing through the resistor?
    7·1 answer
  • If you drop an object from rest, the distance it falls is given by (1/2)at2, where a is the acceleration of the object and t is
    10·1 answer
  • Definition of displacement
    10·1 answer
  • What is genetic energy and what is potential energy
    13·2 answers
  • Una ave vuela a una velocidad constante de 15m/s en una trayectoria rectilínea. Si dura una hora volando ¿cuanta distancia habrá
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!