Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom
Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:
Business Model
Explanation:
A business model is basically a plan of how a business will make a profit. It indicates what type of services or goods they will deliver, who they will provided services to, and the expenses to expect.
A good business model can be used to attract investors, motivate staff and management and recruit potential talent into the business.
Answer:
y = 10.2 m
Explanation:
It is given that,
Charge, 
It is placed at a distance of 9 cm at x axis
Charge, 
It is placed at a distance of 16 cm at x axis
We need to find the point on the y-axis where the electric potential zero. The net potential on y-axis is equal to 0. So,

Here,

So,

Squaring both sides,

So, at a distance of 10.2 m on the y axis the electric potential equals 0.