Answer:
v=20m/S
p=-37.5kPa
Explanation:
Hello! This exercise should be resolved in the next two steps
1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed
Q=VA
for he exitt
Q=flow=5m^3/s
A=area=0.25m^2
V=Speed
solving for V

velocity at the exit=20m/s
for entry

2.
To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

where
P=presure
α=9.810KN/m^3 specific weight for water
V=speed
g=gravity
solving for P1

the pressure at exit is -37.5kPa
Answer:

Explanation:
Power is related to energy by the following relationship:

where
P is the power used
E is the energy used
t is the time elapsed
In this problem, we know that
- the power of the fan is P = 120 W
- the fan has been running for one hour, which corresponds to a time of

So we can re-arrange the previous equation to find E, the energy (in the form of thermal energy) released by the fan:

Over time, yes. It will over time gain more momentum
Answer:
The motion of an object is accelerated when its speed increases.
Answer:
Car radiators: Water is used as coolant car radiators. Due to its high specific heat capacity, it can absorb a large amount of heat energy from the engine of the car, but its temperature does not rise too high.
Explanation:
i hope this answer your question if it s wrong please let know