<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
T = 0.017s
Explanation:
period is the time it takes a particle to make one oscillation
An electric current is periodic in nature
The current reaches 3.8A ten times.
So there must have been 10 cycles (10 periods) in 0.17s. let 'T' be the period:

t is the total time interval
n is the number of oscillations

10T = 0.17
T = 0.17/10 = 0.017s
The force applied to the second ball by the first ball is 6.734 × 10^-4 N.
<h3>What is impulse of force?</h3>
The impulse of force is defined as the sum of the average force and the duration it is applied.
If the mass of the item remains constant, the impulse of force equals the change in momentum of the object.
Given that: mass of a metal sphere: m = 0.026 kg.
Initial speed of the sphere: u = 3.7 m/s.
When the sphere stops completely, its change in momentum = mu - 0
= 0.026×3.7 N-s.
= 0.0962 N-s.
As the spheres are in contact for 0.007s before the second sphere is shot off down the track, the force applied to the second ball =
change in momentum of 1st ball × time of contact
= 0.0962 × 0.007 N
= 0.0006734 N
= 6.734 × 10^-4 N.
Hence, the force applied to the second ball is 6.734 × 10^-4 N.
Learn more about impulse force here:
brainly.com/question/29787329
#SPJ1
Answer: 5.68g/ML.
Explanation; Divide the mass of the unknown substance and the volume of the unknown substance and you will have your answer.
Hope this helps! ^^ if you can pls mark me brainiest!