Answer:
a) 
b) 
c) 
d) 
e)
&
f) 
Explanation:
From the question we are told that:
Stretch Length 
Mass 
Total stretch length
a)
Generally the equation for Force F on the spring is mathematically given by


b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

Where
A=Amplitude

And

Therefore


c)
Generally the equation for Max Acceleration of Mass on the spring is mathematically given by



d)
Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by



e)
Generally the equation for the period T is mathematically given by



Generally the equation for the Frequency is mathematically given by


f)
Generally the Equation of time-dependent vertical position of the mass is mathematically given by

Where
'= signify order of differentiation
Answer:
The minimum distance in which the car will stop is
x=167.38m
Explanation:

∑F=m*a
∑F=u*m*g
The force of friction is the same value but in different direction of the force moving the car so it can stop so



Answer:
Wavelength = 0.7083 meters
Explanation:
Given the following data;
Speed of wave = 340 m/s
Frequency = 480 Hz
To find how long is the sound wave, we would determine its wavelength;
Mathematically, the wavelength of a waveform is given by the formula;
Wavelength = velocity/frequency
Wavelength = 340/480
Wavelength = 0.7083 meters
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R