Answer:
λ = 3 10⁻⁷ m, UV laser
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
let's use trigonometry
tan θ = y / L
as in this phenomenon the angles are small
tan θ =
= sin θ
sin θ = y / L
we substitute
a y / L = m λ
let's apply this equation to the initial data
a 0.04 / L = 1 600 10⁻⁹
a / L = 1.5 10⁻⁵
now they tell us that we change the laser and we have y = 0.04 m for m = 2
a 0.04 / L = 2 λ
a / L = 50 λ
we solve the two expression is
1.5 10⁻⁵ = 50 λ
λ = 1.5 10⁻⁵ / 50
λ = 3 10⁻⁷ m
UV laser
Answer:
hello your question is incomplete attached below is the missing part
answer : short period oscillations frequency = 0.063 rad / sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
Explanation:
first we have to state the general form of the equation
= 
where :


comparing the general form with the given equation
= 18.2329

hence the short period oscillation frequency (
) = 0.063 rad/sec
phugoid oscillations natural frequency (
) = 4.27 rad/sec
as the surface area increases the rate of reaction also increases.
Explanation:
If the wavelength of a sound wave increases and the frequency of the sound wave does not change, the speed of the wave will increase.
Ans: D
Explanation
The sound wave speed is given by E=fλ, where f indicates its frequency and λ indicates its wavelength.
From the equation, it is evident that the sound speed is proportional to both frequency and wavelength.
Here, as wavelength increases, wave speed increases provided there is no change in frequency.